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Abstract—In this paper, we propose a new unified differential are presented. A discussion and summary are given in Section
evolution (UDE) algorithm for single objective global optimiza- 5,
tion. Instead of selecting among multiple mutation strategies as in
the conventional differential evolution algorithm, this algorithm
employs a single equation as the mutation strategy. It has the
virtue of mathematical simplicity and also provides users the
flexbility for broader exploration of different mutation strategies. . . . . . .
Numerical tests using twelve basic unimodal and multimodal The differential evolution algorithm starts with a population

functions show promising performance of the proposed algorithm  initialization. A group of N P solutions in the control parame-

Il. STANDARD DIFFERENTIAL EVOLUTION ALGORITHM

in comparison to convential differential evolution algorithms. ter space is randomly generated to form the initial population.
Index Terms—differential evolution (DE), evolutionary opti- ' 1iS initial population can be generated by sampling from a
mization. uniform distribution within the parameter space if no prior

information about the optimal solution is available, or by
sampling from a known distribution (e.g., Gaussian) if some

I. INTRODUCTION . L .
. . o . . _prior information is available.
Differential evolution is a simple yet efficient population- After initialization, the differential evolution algorithm up-

based, stochastic, evolgtioqary algorithm. It was fir.st_int(cefates the population from one generation to the next gen-
duced by Storn and Price in 1995 as a global optimizatiQf)ation yntil reaching a convergence condition or until the

algorithm to optimize real parameter, real valued functions arﬁqaximum number of function evaluations is reached. At
has received a lot of interest since then [1], [2], [3], [4], [6] ;

5 b f . di he diff 'aﬁ]aCh generation, the update step consists of three operations:
[7], [8]. In & number of comparison studies, the differenti utation, crossover, and selection. The mutation and the

evqutloq algqnthm_performed more efflc!ently than man¥ ossover operations produce new candidates for the next
stochastic optimization methods such as simulated anneali Bneration population and the selection operation is used to

c_ontrolled random search, evol_utionary programming, the pdject from among these candidates the appropriate solutions
ticle swarm method, and genetic algorithms [2], [9], [10], [11}, pa included in the next generation

It has been successfully used in a variety of applications and
demonstrated its effectiveness.

The differential evol_ution algorithm uses the scaled diffetry njutation Srategies
ences of parent solutions as a mutation operator to generate
next-generation candidates for global optimization. In the During the mutation operation stage, for each population
paper of Storn and Price, five different mutation strategies werember (target vector);, i = 1,2,3,--- , NP at generation
proposed [12]. Several additional variants of these mutatiéh @ new mutant vector; is generated by following a mu-
strategies were later proposed to improve the properties of tagon strategy. Some commonly used conventional mutation
mutation operation, e.g. to make it rotationally invariant [13Ftrategies are [1], [2], [7]:
In this paper, we propose a unified differential evolution

algorithm for global optimization. This algorithm integrates DE/rand/l: U = &y, + Foe(Tr, — Try) (1)
the various commonly-used mutation strategies into a single DE/rand/2: ©; = &, + Fupe(Zr, — Zry)
expression. It is mathematically simpler than the conventional FFee(Try — %) (2)
algorithm with its multiple mutation strategies, and also pro- DE/bestl & — & 4 F. (7. — & 3
vides users the flexibility to explore new combinations of esUl v; = &y + Fro(dr, —ar,)  (3)
different mutation strategies during optimization. DE/best/2: o; = & + Fye(Zr, — r,)

The rest of the paper is organized as follows: in Section +Epe(Zry — 2ry)  (4)
2, the_ standard (_jlffer_ennal _evolutlon algorl_thm with multlp!e DE/current-to-best/l o; = #; + Fu. (%) — ;)
mutation strategies is reviewed. In Section 3, the unified - -
differential evolution agorithm is discussed. In Section 4, +Foe(Try —2r,) - (5)
numerical benchmarks with conventional mutation strategies DE/current-to-best/2 v; = &; + Fe, (%) — )

The authors are with the Accelerator and Fusion Research Division, FFoc(Tr = Fra) + Foe (Try = 3r) - (6)
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA (e-mail: DE/current-to-rand/1 v; = @; + For (T, — T5)
s econen 008 FE 5 =) (D)



DE/current-to-rand/2 v; = @; + Fopr (T, — T C. lection

)
+Foe (Bry — Zry) + Foe (Bry, — Zrg) (8) The new generated trial solutidr; is checked against the

DE/rand-to-best/1 @; = &, + F., (&) — &) boundary in the control parameter space. If the solution is
) ) out of the boundary, a new trial solution is generated from a

random sampling within the boundary.
) The selection operation in DE is based on a one-to-one
) (10) comparison. The new trial solutioli; is checked against the

original target parent solutiol;. If the new trial solution
where the integersy, ro, r3, r4 and r; are chosen ran- produces a better objective function value, it will be pubin
domly from the interval[l, NP] and are different from the the next generationd+1) population. Otherwise, the original
current indexi, F,. is a real scaling factor that controlsparent is kept in the next generation population.
the amplification of the differential variatiors, is the best  The above procedure is repeated for AllP parents to
solution among théV P population members at the generatiogenerate the next generation population. Many generadmns
G, and F,,. is a weight for the combination between thaised to attain the final global optimal solution.
original target vector and the best parent vector or theaand
parent vector. The strategy DE/rand/1 is the most widelglus@||. T HE UNIFIED DIFFERENTIAL EVOLUTION ALGORITHM
mutation strategy proposed in the original paper of Stomh an Ten different mutation strategies have been proposed éor th

Price. It has stronger exploratipn capability but may cogee standard differential evolution algorithm (Eqgs. 1-10). Wh
more slowly than the s_trateg|es that use the best SOIUtIB%/rand/l/bin has been widely used, DE/best/1/bin was pro-
from the parent generation. The strategy DE/rand/2 uses t}5’8sed to have better performance in a number of optimization

difference vectors and may_result in better perturbatic_:amthtest examples [15]. Meanwhile, DE/best/2/bin was suggeste
the strategies that use one difference vector [14]. Théesfies as a highly beneficial method in the ICEC'96 contest [16].

DE/best/1 and DE/best/2 take advantage of the best SOlL't\?lnthis paper, we propose a unified mutation strategy for the

found in the parent population and have a faster CONVergenfifferential evolution algorithm. The unified mutationatgy
towards the optimal solution [15]. However, they may beconbean be written as:

stuck at a local minimum point during multimodal func-

tion optimization. The DE/current-to-best/1 and DE/cutrto- U = T+ Fi(T —T) + Fa (T, — T5)

best/2 strategies provide a compromise between exptwitati +F3(Zy, — Bpy) + Fu(ir, — &) (13)

of the best solution and exploration of the parameter space.

The DE/current-to-rand/1 and DE/current-to-rand/2 niatat Where f1, F», I3 and Fy are four parameters that can be
strategies are rotation-invariant strategies [13]. Therixgl- adpatively adjusted during the optimization process. Ftioen
to-best/ strategies are similar to the DE/current-to/stsate- above equation, one can see that far = 0, F> = 1, and
gies, but larger diversity of the mutant vector is attaingd bfs = 0. this equation reduces to DE/rand/1; féf = 0,

using a randomly selected parent vector instead of the murré2 = 1, and F = F, it reduces to DE/rand/2; foFy = 1,

F, = 0, and F3 = Fy, it reduces to DE/best/2; faF, =
and Iy, = 0, it reduces to DE/current-to-best/1; féh =
and F3 = Fy, it reduces to DE/current-to-best/2; féli = 0,
and Fy = 0, it reduces to DE/current-to-rand/1; fét, = 0,

A crossover operation between the new generated mutand F; = F}, it reduces to DE/current-to-rand/2; féb = 1,
vector ¢; and the target vectaor; is used to further increaseand F, = 0, it reduces to DE/rand-to-best/1; fdf, = 1,
the diversity of the new candidate solution. This operaticand F3; = F}, it reduces to DE/rand-to-best/2. Using the

+ch (frg - f?”_’;
DE/rand-to-best/2 ¢; = &, + Fo,(Zp — Z;
+ch(fr2 - f’rg) + FM(CEM - ‘frs

o O

B. Crossover

combines the two vectors into a new trial vectdy,i = single equation (13), ten mutation strategies in the stahda
1,2,3,---, NP, where the components of the trial vector ardifferential evolution algoritm can be written as a single

obtained from the components @f or Z; according to a mutation strategy. Meanwhile, by using a different set of
crossover probability’R. In the binomial crossover schemeparameter$’, F», F3, F,, a combination of different strategies
for a D dimensional control parameter space, the new triahn be achieved. For example, from our experience, we found
vectorﬁi, i=1,2,---, NP is generated using the followingthat usingF; = 0.25, F» = 0.25, F3 = 0.2, Fy = 0.2,

rule: and CR = 0.8 in uDE can give reasonable performance
. in a number of test studies. If these parameters can be
Ui = (w1, %2, ,UipD) (11) adaptively adjusted during the optimization evolutionerth
vi;, if rand; < CR or j = mbr; multiple mutation strategies and their combinations can be
wij = 9 . (12)  ysed during different st f optimization. Thus, théieai
zij, otherwise used during different stages of optimization. Thus, thdieai

strategy has the virtue of mathematical simplicity and also
where rangl is a randomly chosen real number in the intervadrovides the user with flexibility for broader exploratiof o
[0, 1], and the index mbris a randomly chosen integer in thedifferent mutation strategies.
rangell, D]. This ensures that the new trial vector contains at In the following, we also propose a simple adaptive method
least one component from the new mutant vector. for uDE (called uDEadapt) so that the user does not have



to specify the five parameterd?(, F», F3, Fy, CR) prior to (7) Rastrigin’s function
optimization. In this adaptive uDE scheme, after the paputa

initialization, the five parameters are randomly generébéd Fras(%) = 10N + Z (xf —10 COS(wai)) :
lowing a uniform distribution in the interva0, 1], and the mu- i—1
tation strategy (13) is used to produce new trial solutians f —5<uz; <5

the next generation. If the best solution in the new germnasi
better than the best solution of the parent generationgtoigp

of control parameters is put into a successful pool and these
parameters are reused to produce another generation lof tria
solutions. If the best solution of the current parent getiamnas

not improved, these five control parameters will be disadrde i
A new set of control parameters are then generated fromreithe (%) Salomon’s function
1) a uniform sampling withif0, 1] with probability 0.5, or 2)

a random choice from the parameters stored in the successful  F,,,(Z) = —cos | 27
pool, provided the pool is not empty. This process is refkate
for many generations until obtaining the maximum allowed
number of function evaluations or convergence to the optima
solution.

(8) Schwefel’s function

N
Fien (&) = 418.9820N — " (; sin(y/|z:]));
=1

— 500 < 2; < 500;

+ 0.1 —100 < z; < 100;

IV. NUMERICAL BENCHMARK (10) Whitely’s function
A. Test functions ZZ ) +1
wht
Twelve well-known test functions that have been widely o 4000

used in studies of global optimization in evolutionary camp

) . . . . wherey; ; = 100(z; — z2)% + 1_1_2;
tation are used in this paper for numerical benchmarking [10 Yig (2 — 7) (1 —ai)

[11], [15], [17], [18]. These functions are given below: — 100 < =; < 100;
) (11) Weierstrass’s function
(1) Sphere functlon N

Fuse(@) = S w(zy,0.5,3,20) — Nw(0,0.5,3, 20
Fopn(@ Zx ~100 < z; < 100; 1 ; )= Nl &

=1

(2) Schwefel's problem 1.2 m
2 w(z;,a,b,m) = Z a® cos(2mb™ (x; + 0.5));

Fuena (& Z <Z x) . —100 < z; < 100; k=0

where

j=1 \i=1 —05§1’1§05,
(3) Quartic function with noise (12) Generalized penalized function
N N—-1
Fori(Z) = szf +rand[0,1); —1.28 <ux; <1.28; Fon1 (7) = % {10 sin?(myy ) + Z (yi — 1)2[1
=1 =1
(4) Rosenbrock’s function +10sin®(ry;41)] + (ynv — 1)%}
N—-1 N
Fros(f) = Z (100(1’1_’_1 - x?)Q + (1 - :Ei)2) 5 —+ Z U(Ii, 10, 100, 4),

i=1 i=1
— 100 < x; <100;

1
wherey; =1+ -(z; +1) and
(5) Ackley’s function Y 4( )

u(zi,a, k,m)

Foox(%) = 20 + exp(1) — 20 exp | —0.2 k(z; —a)™, x> a;
=40, —a<z; < a,
1 k(—z; —a)™, z; < —a.
— exp <N ;cos@ﬂ'zi)> i =32 < x; <32 ~ 50 < 2; < 50;
(6) Griewank’s function
Z H COS The sphere function is a continuous, unimodal and separable
Frw( 4000 function. The Schewefel's problem 1.2 is a non-separable

unimodal function. The noisy quartic function is a unimodal
non-separable function with random noise in the objective
value. The Rosenbrock’s function with dimension greater

— 600 < g 600;



than three is a multimodal and non-separable problem. TB&s win six out of the 12 test examples. The uDEs win five
global minimum lies inside a parabolic shaped flat valleye Thout of the 12 test examples. In the tests with 50 dimensional
Ackely’s function is also a multimodal non-separable pesbl objective functions, the conventional DEs win four out of 12
and has many local minima and a narrow global minimurtest examples, and the unified DEs win seven out the 12 test
The Rastrigin’s function is a complex multimodal separablexamples. From these test problems, it appears that the uDEs
problem with many local minima. The Griewank’s funcperform better with increasing problem dimension. Thismig
tion is a multimodal non-separable function. The Salomoni®e due to the balance of exploitation and exploration in the
function and the Whitely’'s function are non-separable anEs with combined mutation strategies.
highly multmodal with many local minima. The Weierstrass In Figs. 1 and 2, we show the evolution of the objective
function is a multimodal, nonseparable continuous fumctidunction value of the 12 test functions for the algorithmewh
that is differentiable only on a set of points. The geneealiz in Table Il with dimensionN = 50. At each generation, the
penalized funtion is a multimodal nonseparable irregutad aobjective function value has been averaged over 25 random
discontinuous function. The number of local minima front teseeds. It is seen that the unified differential algorithnréquen
functions (5) to (12) increases quickly with the problem diguite well in most test examples to reach converged solstion
mension. The exact global minimum for all of these problemihe adaptive uDE algorithm (uDEadapt) does not have the fast
is achieved for an objective function value of zero. convergence rate of uDE, but proves more robust in finding the
optimal solutions in Rosenbrock’s function and in Whitsly’

function by adjusting the five control parameters during the
B. Benchmark results y adl g P g

optimization.
To test the proposed uDE algorithms, we carried out numer-
ical optimization using the 12 benchmark objective funasio V. DISCUSSION ANDSUMMARY

30, and 50 respectively. We compare the proposed UDFy the differential evolution algorithm. In comparison tiee
algorithms with two widely used conventional DE algorithmsstandard differential evolution algorithm, this method iae
DE/rand/1/bin £ = 0.9, CR = 0.9) [2], [19], DE/rand/1/bin  5qyantages of both mathematical simplicity and flexibifiy

(F' = 0.5, CR = 0.9) [10], [11], [15], and DE/best/1/bin exploring broader mutation strategies. The disadvantdge o
(F = 0.6, CR = 0.3) [15]. The parameters used in UDEhis algorithm is that it involves more control parameters.
are given in Section Il £y = 0.25, I = 0.25, F3 = 0.2, |nstead of three control parameters,,, F,. and CR, as

Fy = 0.2, andCR = 0.8). The choice of these parametersy the conventional DE, the unified DE has five control

is based on the consideration of a balance between the B¥rametersf, Fy, s, F, and CR. The performance of the
ploitation of the best solution found in the current popioiat gigorithm will depend on the choice of these parameters. In
the e_xploration of the random solution, a_nd the currentefargpis study, we suggested a simple adaptive scheme to select a
solution. The scale factors for the two difference vectal arget of control parameters for the whole population. In presi

the crossover probability are chosen to increase the speed@dies, a number of adaptive methods have been proposed
convergence. The simple adaptive ubDE (uUDEadapt) algorith determine the control parameters and the combination of
is also used in the benchmark tests. The maximum numBgftation strategy and control parameters [10], [11], [120],

of function evalutions is set ag), 000/N. The population size [22], [23], [24]. These more sophisticated adaptive meshod
(NP) for the 10, 30, and 50 dimensional problems is set asnyolve using a set of control parameters for each individua
50, 60, and 100, respectively. Each optimization is performedoytion in the population. In future work, we will explore
for 25 different random seeds. The average objective functigp,, these more advanced adaptive methods can be used to

value and its standard deviation at the end of the maximymprove the performance of the proposed unified differéntia
number of function evaluations is reported in Table I fogyoution algorithm.

each of thel0 dimensional objective functions, in Table Il
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TABLE |
PERFORMANCE COMPARISON OF DIFFERENDE STRATEGIES FORN = 10.
Function rand/1/bin (0.9,0.9) rand/1/bin (0.5,0.9) best/1/bin (0.6,0.3) uDE uDEadapt
Mean Std Mean Std Mean Std Mean Std Mean Std
Fopn 2.54E-13 | 2.35E-13 | 2.88E-83 | 5.42E-83 | 3.73E-94 | 1.14E-93 | 3.07E-79 | 1.44E-78 | 4.62E-69 | 2.26E-68
Fiycno 7.62E-06 | 5.12E-06 | 1.13E-53 | 1.42E-53 | 4.79E-13 | 5.40E-13 | 3.74E-52 | 9.40E-52 | 1.66E-26 | 8.14E-26
Fore 8.15E-03 | 2.79E-03 | 8.15E-04 | 3.64E-04 | 6.80E-04 | 2.25E-04 | 5.96E-05 | 3.15E-05| 3.78E-04 | 2.26E-04
Fros 1.08E-03 | 8.00E-04 | 3.08E+00| 1.24E+00| 1.78E+00 | 2.90E+00| 5.66E+00| 3.84E+00| 9.61E-01 | 2.21E+00
Facx 3.26E-07 | 1.62E-07 | 3.00E-15 | 6.96E-16 | 2.97E-15 | 6.96E-16 | 2.54E-15 | 1.30E-15 | -4.44E-16 | 0.00E+00
Forw 2.10E-01 | 1.46E-01 | 1.56E-02 | 1.25E-02 | 0.00E+00 | 0.00E+00 | 8.88E-18 | 4.35E-17 | 1.11E-04 | 5.42E-04
Fras 8.88E+00 | 6.11E+00| 7.64E-01 | 8.57E-01 | 3.19E-46 | 1.07E-45| 2.83E-06 | 1.37E-05| 5.91E-25 | 2.19E-24
Ficn 2.58E+01| 9.18E+01| 1.27E-04 | 3.15E-12 | 6.12E-04 | 5.59E-04 | 4.23E+02 | 4.42E+02| 4.64E-02 | 5.28E-02
Foa 1.07E-01 | 1.05E-02 | 9.99E-02 | 1.86E-09 | 9.99E-02 | 3.87E-10 | 9.99E-02 | 0.00E+00 | 9.99E-02 | 2.95E-09
Fant 3.88E+01| 1.70E+01| 1.26E+01 | 1.36E+01| 2.97E-01 | 6.45E-01 | 1.84E+00| 7.17E-01 | 2.78E+00 | 2.75E+00
Fost 2.52E-03 | 7.86E-04 | 0.00E+00 | 0.00E+00| 0.00E+00 | 0.00E+00| 0.00E+00 | 0.00E+00| 0.00E+00 | 0.00E+00
Fon1 2.04E-13 | 1.89E-13 | 4.71E-32 | 0.00E+00| 7.63E-08 | 5.46E-08 | 2.69E-06 | 2.53E-06 | 6.15E-08 | 8.75E-08
TABLE Il
PERFORMANCE COMPARISON OF DIFFERENDE STRATEGIES FORN = 30.
Function rand/1/bin (0.9,0.9) rand/1/bin (0.5,0.9) best/1/bin (0.6,0.3) uDE uDEadapt
Mean Std Mean Std Mean Std Mean Std Mean Std
Fopn 1.19E+00| 8.96E-01 | 1.35E-71 | 1.84E-71 | 2.29E-50 | 3.85E-50 | 1.19E-35 | 1.56E-35| 1.17E-25| 5.27E-25
Ficho 4.10E+03 | 1.93E+03| 4.95E-12 | 6.41E-12 | 1.84E+00| 6.71E-01 | 1.17E-09 | 1.28E-09 | 2.58E-05| 4.43E-05
Fyre 6.73E-02 | 1.82E-02 | 2.25E-03 | 4.84E-04 | 2.55E-03 | 7.63E-04 | 7.96E-05 | 2.80E-O5 | 5.20E-04 | 2.50E-04
Fros 2.44E+03 | 1.92E+03| 1.28E+01| 9.19E+00| 3.11E+00| 5.35E+00| 3.57E+00| 7.19E+00| 2.09E-14 | 6.77E-14
Facx 6.32E-01 | 3.79E-01 | 3.68E-15 | 1.30E-15| 4.53E-15 | 1.74E-15| 3.11E-15 | 0.00E+00 | 5.54E-13 | 2.13E-12
Forw 8.31E-01 | 1.38E-01 | 5.92E-04 | 2.01E-03 | 0.00E+00 | 0.00E+00 | 8.88E-18 | 3.01E-17 | 1.33E-17 | 3.61E-17
Fras 1.27E+02| 3.72E+01| 1.22E+01| 4.11E+00| 2.58E-22 | 4.43E-22 | 4.26E-16 | 7.59E-16 | 7.63E-03 | 3.64E-02
Ficn 5.79E+03 | 1.40E+03| 7.16E+02 | 7.96E+02| 3.82E-04 | 7.28E-12 | 1.48E+03| 2.45E+03| 2.43E-01| 7.37E-01
Foa 1.57E+00| 2.41E-01 | 1.82E-01 | 3.66E-02 | 1.64E-01 | 4.80E-02 | 9.99E-02 | 0.00E+00 | 9.99E-02 | 1.73E-10
Fant 7.04E+06 | 3.17E+07 | 2.71E+02 | 1.42E+02| 1.32E+01 | 2.33E+01| 1.96E+00| 4.61E+00| 8.40E-30 | 3.35E-29
Fost 2.12E+00| 7.44E-01 | 0.00E+00 | 0.00E+00| 0.00E+00 | 0.00E+00| 0.00E+00 | 0.00E+00| 3.79E-10| 1.84E-09
Fon 2.29E-01 | 2.89E-01 | 4.15E-03 | 2.03E-02 | 1.57E-32 | 4.86E-40 | 3.28E-23 | 1.12E-22 | 1.64E-17 | 4.07E-17
TABLE Il
PERFORMANCE COMPARISON OF DIFFERENDE STRATEGIES FORN = 50.
Function rand/1/bin (0.9,0.9) rand/1/bin (0.5,0.9) best/1/bin (0.6,0.3) ubDE uDEadapt
Mean Std Mean Std Mean Std Mean Std Mean Std
Fopn 2.85E+03 | 9.21E+02 | 4.84E-35 | 8.77E-35 | 7.90E-38 | 4.48E-38 | 3.32E-34 | 3.58E-34 | 5.11E-23 | 2.45E-22
Ficno 7.35E+04 | 5.83E+03 | 1.28E+00| 4.69E-01 | 6.76E+02 | 2.50E+02| 2.06E-06 | 3.47E-06 | 1.06E-03 | 1.19E-03
Fore 1.43E+00| 8.18E-01 | 6.34E-03 | 1.18E-03 | 3.93E-03 | 9.42E-04 | 9.07E-05 | 3.70E-05 | 4.89E-04 | 2.14E-04
Flros 1.36E+08 | 6.28E+07 | 2.69E+01| 1.59E+01 | 4.16E+00| 2.45E+00| 2.81E+00| 7.33E+00| 6.17E-16 | 3.01E-15
Fiocx 9.29E+00 | 8.04E-01 | 6.66E-15 | 0.00E+00| 6.66E-15 | 0.00E+00| 3.11E-15| 0.00E+00| 3.12E-14 | 1.17E-13
Forw 2.66E+01 | 8.29E+00| 3.11E-16 | 7.02E-17 | 0.00E+00 | 0.00E+00| 1.87E-16 | 9.27E-17 | 1.51E-16 | 7.61E-17
Fias 453E+02 | 4.00E+01 | 1.91E+02 | 5.33E+01| 1.09E-11 | 5.33E-11 | 2.77E-15 | 1.13E-15| 2.75E+00| 6.03E+00
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